

SISTEMA DE ANCLAJE HLS

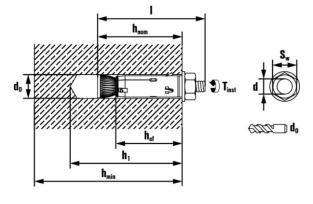
DESCRIPCIÓN DEL PRODUCTO

Anclaje de rosca interna de acero al carbono HLS

Sistema de anclaje	Características y ventajas		
	HLS de acero al carbono de HILTI	 Tapa de plástico antipolvo para facilitar el enroscado de la varilla. Alas para que el anclaje no gire en el orificio al instalar la varilla roscada. Uso en aplicaciones no estructurales Adecuado para fijación en concreto de peso normal, incluido en losas de concreto nervuradas. Dos métodos de instalación para facilitar la instalación en obra. 	

Concreto no fisurado

ESPECIFICACIONES DEL MATERIAL


Los anclajes HLS estan fabricados en acero al carbono y cuentan con un revestimiento de zinc de mínimo $5\mu m$ en conformidad con norma ASTM F1941, Fe/Zn 5 AB.

PARÁMETROS DE INSTALACIÓN EN CONCRETO

Tabla 1 - Información de instalación de HLS

Información de instalación	Símbolo	Unid.	Diámetro nominal del anclaje en pulg.		
			1/4"	3/8"	
Diámetro de la varilla (o tornillo)	d	pulg.	1/4	3/8	
Diámetro de la broca de perforación	d ₀	pulg.	1/2	5/8	
Empotramiento efectivo	h _{ef}	pulg.	1-9/16	1-13/16	
	· ·er	(mm)	(40)	(46)	
Empotramiento nominal	h _{nom}	pulg.	2-1/16	2-3/8	
Empotramiento nominai	' 'nom	(mm)	(52)	(60)	
Profundidad de perforación en	h₁	pulg.	2-3/8	2-3/4	
material base	***	(mm)	(60)	(70)	
Par de instalación	T _{inst}	ft-lb	9	15	
Par de instalación	inst	(Nm)	(12)	(20)	
	h _{min}	pulg.	8	8	
Espesor mínimo del material base	' 'min	(mm)	(203)	(203)	
B	C _{min}	pulg.	2	2	
Distancia mínima a borde	min	(mm)	(51)	(51)	
B	S _{min}	pulg.	4-1/2	4-1/2	
Distancia mínima entre anclajes	⊤min	(mm)	(114)	(114)	

Figura 1 - Parámetros de instalación HLS de Hilti

DATOS DE DISEÑO EN CONCRETO

Tabla 2 - Cargas admisibles del anclaje HLS de acero al carbono en concreto no fisurado y de peso normal^{1,2}

Diámetro Empotra-		f' _c = 2000 p	osi (13.8 MPa)	f' _c = 4000 p	osi (27.6 MPa)	f'_{c} = 6000 psi (41.4 MPa)		
nominal del anclaje pulg.	miento efectivo pulg. (mm)	Tensión lb (kN)	Corte lb (kN)	Tensión Ib (kN)	Corte lb (kN)	Tensión lb (kN)	Corte lb (kN)	
	1-7/8	765	680	1010	680	1165	680	
1/4	(48)	(3.4)	(3.0)	(4.5)	(3.0)	(5.2)	(3.0)	
2/0	2-1/8	900	1520	1590	1520	2050	1520	
3/8	(54)	(4.0)	(6.8)	(7.1)	(6.8)	(9.1)	(6.8)	

¹ Cargas admisibles calculadas con un factor de seguridad de 4.

Tabla 3 - Cargas máximas del anclaje HLS de acero al carbono en concreto no fisurado y de peso normal

Diámetro Empotra-		f' _c = 2000 p	osi (13.8 MPa)	f' _c = 4000 p	osi (27.6 MPa)	f' _c = 6000 psi (41.4 MPa)		
nominal del anclaje pulg.	miento efectivo pulg. (mm)	Tensión lb (kN)	Corte lb (kN)	Tensión Ib (kN)	Corte lb (kN)	Tensión lb (kN)	Corte Ib (kN)	
4 /4	1-7/8	3065	2720	4030	2720	4655	2720	
1/4	(48)	(13.6)	(12.1)	(17.9)	(12.1)	(20.7)	(12.1)	
2/0	2-1/8	3595	6080	6350	6080	8190	6080	
3/8	(54)	(16.0)	(27.0)	(28.2)	(27.0)	(36.4)	(27.0)	

Relación de Carga combinada de tensión y corte para la tabla 3

$$\left(\frac{N_d}{N_{rec}}\right)^{\frac{5}{3}} + \left(\frac{V_d}{V_{rec}}\right)^{\frac{5}{3}} \le 1.0$$

Tabla 4 - Factores de ajuste de carga para anclajes de Hilti HLS de acero al carbono en concreto no fisurado

Factores de	Factores de ajuste de carga (distancia entre anclajes) f _A				Factores de ajuste de carga (distancia a borde de concreto) f _R						
	Tensión / Corte				Tensi	Corte f _{RV}					
Espacia	amiento	Diámetro del	anclaje (pulg)	Distancia	a al borde	Diámetro del anclaje (pulg)		Diámetro del anclaje (pulg)			
pulgadas	(mm)	1/4"	3/8"	pulgadas	(mm)	1/4"	3/8"	1/4"	3/8"		
2	(51)	-	-	2	(51)	0.55	0.50	0.55	0.35		
2-1/2	(64)	-	-	2-1/2	(64)	0.61	0.56	0.61	0.43		
3	(76)	-	-	3	(76)	0.66	0.63	0.66	0.51		
3-1/2	(89)	-	-	3-1/2	(89)	0.72	0.69	0.72	0.59		
4	(102)	-	-	4	(102)	0.78	0.75	0.78	0.68		
4-1/2	(114)	1.00	0.90	4-1/2	(114)	0.83	0.81	0.83	0.76		
5	(127)	1.00	0.93	5	(127)	0.89	0.88	0.89	0.84		
5-1/2	(140)	1.00	0.97	5-1/2	(140)	0.94	0.94	0.94	0.92		
6	(152)	1.00	1.00	6	(152)	1.00	1.00	1.00	1.00		

² Aplique los factores de reducción de espaciamiento y distancia al borde de la tabla 4 según sea necesario. Compare el valor calculado con la resistencia del acero de la varilla insertada en la tabla 6. Se deberá usar el menor de los valores para el diseño.

Tabla 5 - Cargas admisibles del anclaje HLS de Hilti en la parte inferior de una losa de concreto nervurada de peso normal^{1,2,3}

		f' _c = 3000 psi (20.1 MPa)			
Diámetro nominal del anclaje pulg.	Empotra-miento efectivo pulg. (mm)	Tensión Ib (kN)	Corte Ib (kN)		
474	1-7/8	460	475		
1/4	(48)	(2.0)	(2.1)		
2/9	2-1/8	640	500		
3/8	(54)	(2.8)	(2.2)		

¹ Cargas admisibles calculadas con un factor de seguridad de 4.

Relación de Carga combinada de tensión y corte para la tabla 5

$$\left(\frac{N_d}{N_{rec}}\right) + \left(\frac{V_d}{V_{rec}}\right) \le 1.0$$

Figura 2 - Parámetros de instalación de anclaje HLS de Hilti en la parte inferior de una viga de losa de concreto nervurado no fisurado

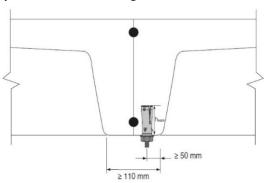


Tabla 6 - Resistencia admisible del acero para los grados comunes de varillas roscadas de acero al carbono¹

Diámetro nominal	AISI	AISI 1010		ASTM A36		I A307	ASTM A193 B7	
del anclaje pulg.	Tensión lb (kN)	Corte lb (kN)	Tracción lb (kN)	Corte lb (kN)	Tracción lb (kN)	Corte lb (kN)	Tracción lb (kN)	Corte lb (kN)
1/4	855	440	940	485	970	500	2025	1045
	(3.8)	(2.0)	(4.2)	(2.2)	(4.3)	(2.2)	(9.0)	(4.6)
3/8	1925	995	2115	1090	2185	1125	4555	2345
	(8.6)	(4.4)	(9.4)	(4.8)	(9.7)	(5.0)	(20.3)	(10.4)

¹ Resistencia admisible del acero según se define en el Manual de la Construcción en Acero de la AISC (ASD)

Tensión = 0.33 x F_u x Área nominal

Corte = 0.17 x F_u x Área nominal

² Compare el valor calculado con la resistencia del acero de la varilla insertada en la tabla 6. Se deberá usar el menor de los valores para el diseño.

³ No es necesario aplicar los factores de reducción de la tabla 4 a los valores de esta tabla, ya que las pruebas se realizan en las condiciones que se muestran en la figura 2.

Anclaje mecánico HLS

Tabla 7 - Resistencia máxima del acero para los grados comunes de varillas roscadas de acero al carbono¹

Diámetro		AISI 1010		ASTM A36		ASTM A307			ASTM A193 B7			
nominal del anclaje pulg.	Límite elástico lb (kN)	Tensión Ib (kN)	Corte lb (kN)	Límite elástico lb (kN)	Tensión lb (kN)	Corte lb (kN)	Límite elástico lb (kN)	Tensión Ib (kN)	Corte lb (kN)	Límite elástico lb (kN)	Tensión lb (kN)	Corte lb (kN)
1/4	1405	1950	1170	1145	2135	1280	1195	2210	1325	3340	4605	2760
	(6.2)	(8.7)	(5.2)	(5.1)	(9.5)	(5.7)	(5.3)	(9.8)	(5.9)	(14.9)	(20.5)	(12.3)
3/8	3425	4380	2630	2790	4800	2880	2905	4970	2980	8140	10350	6210
0/0	(15.2)	(19.5)	(11.7)	(12.4)	(21.4)	(12.8)	(12.9)	(22.1)	(13.3)	(36.2)	(46.0)	(27.6)

¹ Resistencia máxima del acero según se define en el Manual de la Construcción en Acero de la AISC 2da Edición (LRFD) Límite elástico = F_y x Área de esfuerzo de tensión Tensión = 0.75 x F_u x Área nominal

Corte = 0.45 x F_u x Área nominal

INFORMACIÓN PARA PEDIDOS

Descripción	Cantidad pcs.	Número de artículo
HLS 1/4"	100	2231054
HLS 3/8"	50	2231055